

MAKING THE TRANSITION FROM IECC 2009/2012 TO 2015

Trey McDougall, PE I-LinCP Forum 2017

- Code Overview
- How each discipline is affected by IECC 2015:
 - Architectural
 - Mechanical
 - Electrical
- Code comparisons in regards to efficiencies—and what this means to owners and A/E/C industry

CODE OVERVIEW

SECO (State Energy Conservation Office) adopted 2015 IECC Effective November 1, 2016

Code History

Effective Dates	Codes
Prior to 1999	Texas had no mandatory statewide energy code.
Sept. 1, 2001 – Mar. 31, 2011	2000 IECC with 2001 Supplement
Apr. 1, 2011 – Oct. 31, 2016	2009 IECC
Nov. 1, 2016	2015 IECC

CODE OVERVIEW

<text><text><text><text>

Divided into Commercial and Residential Sections by Chapters:

Chapter 1 – Scope and Admin Chapter 2 – Definitions Chapter 3 – General Requirements Chapter 4 – Energy Efficiency Chapter 5 – Existing Buildings Chapter 6 – Referenced Standards

INFORMATION REQUIRED ON CONSTRUCTION DOCUMENTS C103.2

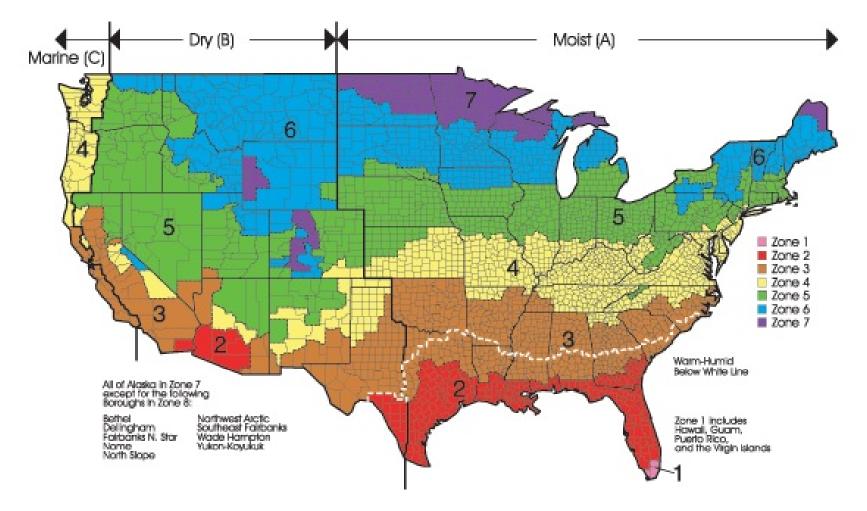
CODE OVERVIEW

12 PIECES REQUIRED

- 1. Insulation materials and R-values
- 2. Fenestration U-factors and solar heat gain coefficients
- 3. Area-weighted U-factor and solar heat gain coefficient calcs
- 4. Mechanical system design criteria
- 5. Mechanical and service water heating system and equipment types, sizes and efficiencies
- 6. Economizer description

INFORMATION REQUIRED ON CONSTRUCTION DOCUMENTS C103.2

CODE OVERVIEW


12 PIECES REQUIRED

- 7. Equipment and system controls
- 8. Fan Motor horsepower and controls
- 9. Duct sealing, duct and pipe insulation and location
- 10. Lighting fixture schedule with wattage and control narrative
- 11. Location of daylight zones on floor plan
- 12. Air sealing details

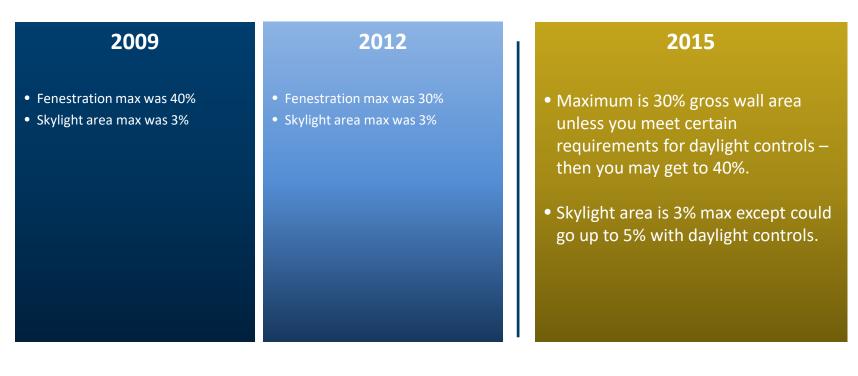
CLIMATE ZONE MAP

CODE OVERVIEW

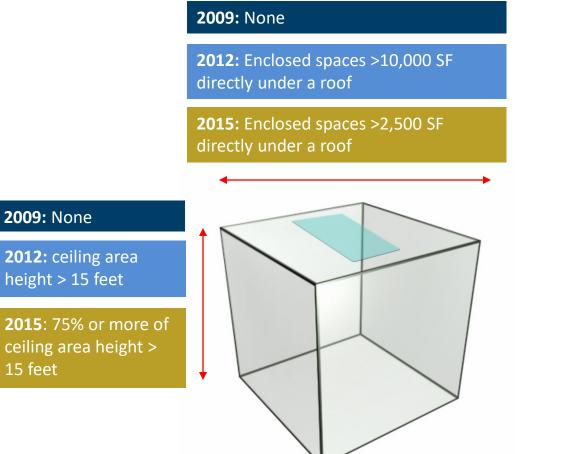
Bexar, Travis, Comal and Guadalupe Counties are Zone 2A

MINIMUM ENVELOPE REQUIREMENTS

ARCHITECTURAL


	2009	2012	2015
Walls R-Value	R-13	R-13 + R-5 ci	R-13 + R-5 ci
Roofs R-Value	R-20.8	R-20.8	R-25 ci
Glazing – SHGC	0.25	0.25	0.25-SEW & 0.33-N
Glazing – U-Value	0.75	0.65	Fixed – 0.5, Operable – 0.65

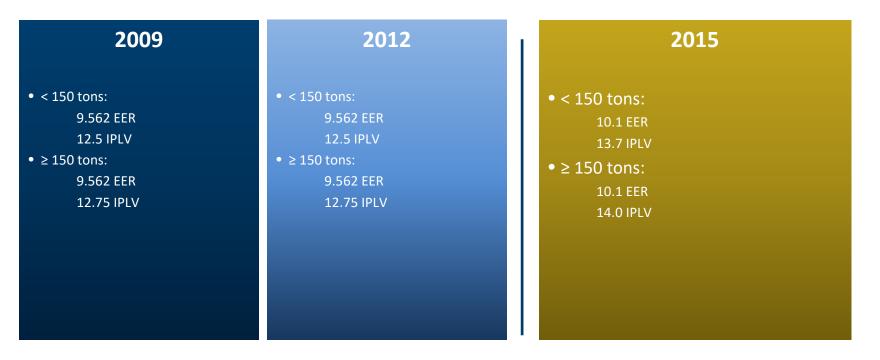
- Wall (Metal Framed): ~28% increase!
- Roof (Insulation Entirely Above Deck): ~17% increase!
- Window (Projection Factor < 0.2)


MAXIMUM FENESTRATION AREA AND SKYLIGHT AREA C402.4.1

ARCHITECTURAL

SKYLIGHTS NOW REQUIRED IN CERTAIN SITUATIONS, C402.4.2

ARCHITECTURAL


SKYLIGHT REQUIRED FOR THESE TYPES OF SPACES:

- Office
- Lobby
- Atrium
- Concourse
- Corridor
- Storage
- Gym/Exercise
- Convention center
- Auto service
- Manufacturing
- Nonrefrigerated Warehouse
- Retail
- Distribution
- Transportation depot
- Workshop

AIR COOLED CHILLERS

MECHANICAL

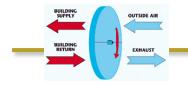
- EER ~ 5% increase from IECC 2009
- IPLV ~ 9% increase from IECC 2009

AIR COOLED PACKAGED RTU'S

MECHANICAL

2009	2012	2015				
 ≥ 5.5 tons < 11.25 tons: 10.1 EER ≥ 11.25 tons < 20 tons: 9.3 EER 	 ≥ 5.5 tons < 11.25 tons: 10.8 EER ≥ 11.25 tons < 20 tons: 10.4 EER 	 ≥ 5.5 tons < 11.25 tons: 11.0 EER ≥ 11.25 tons < 20 tons: 10.8 EER 				
(assuming gas heat)	(assuming gas heat)	(assuming gas heat)				

- 5.5-11.25 ton EER ~ 8% increase from IECC 2009
- 11.25-20 ton EER ~ 14% increase from IECC 2009


ECONOMIZERS C403.3

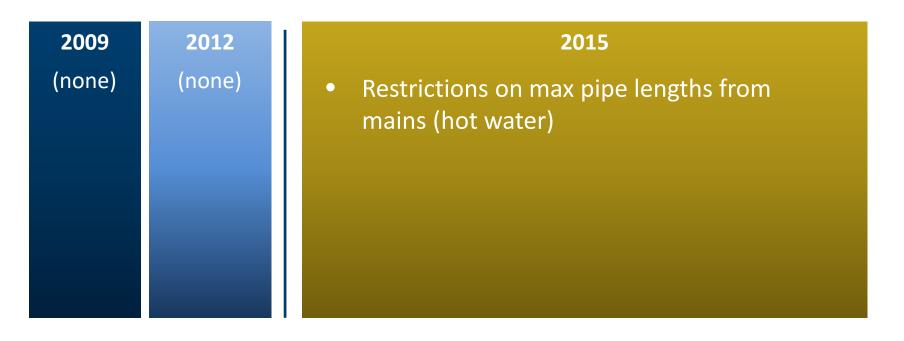
MECHANICAL

• This was new in 2012, but new to San Antonio and many Texas cities and entities in 2015.

MECHANICAL

2009		2012 / 2015								
(none)			PERCENT (%) OUTDOOR AIR AT FULL DESIGN AIRFLOW RATE							E
		CLIMATE ZONE	≥ 10% and < 20%	≥ 20% and <30%	≥ 30% and < 40%	≥ 40% and < 50%	≥ 50 and <60%	≥ 60% and < 70%	≥ 70% and < 80%	≥ 80 %
				C	ESIGN SU	ESIGN SUPPLY FAN AIRFLOW RATE (cfm)				
	3	LA, <mark>2A</mark> , BA, 4A, 5A, 6A	≥ 26,000	≥ 16,000	≥ 5,500	≥ 4,500	≥ 3,500	≥ 2,000	≥ 1,000	≥ 0
			This sec applicable							

MECHANICAL


2012	2015					
(none)	BOILER SYSTEM DESIGN INPUT (BTU/H)	MINIMUM TURNDOWN RATIO				
	≥ 1,000,000 and less than or equal to 5,000,000	3 to 1				
	≥ 5,000,000 and less than or equal to 10,000,000	4 to 1				
	>10,000,000	5 to 1				
		(none) BOILER SYSTEM DESIGN INPUT (BTU/H) ≥ 1,000,000 and less than or equal to 5,000,000 ≥ 5,000,000 and less than or equal to 10,000,000				

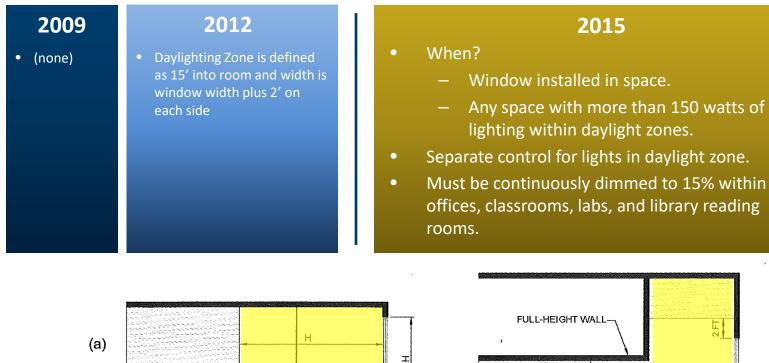
• Minimum Turndown is new to 2015

EFFICIENT WATER SUPPLY PIPING

MECHANICAL

- This is new to 2015
- $\frac{1}{2}$ " pipe run out to a faucet, 2 ft max from main.
- Pumps shut off when loop temp is satisfied.

ELECTRICAL


• ~28% lighting power density reduction, 2009-2015.

ty ty

• Lighting power density reduction based on school/university type.

DAYLIGHTING

ELECTRICAL

DAYLIGHT ZONE

- (a) Section view
- (b) Plan view of daylight zone under a rooftop monitor

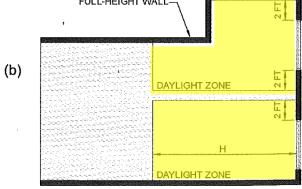


FIGURE C405.2.3.2(1) DAYLIGHT ZONE ADJACENT TO FENESTRATION IN A WALL

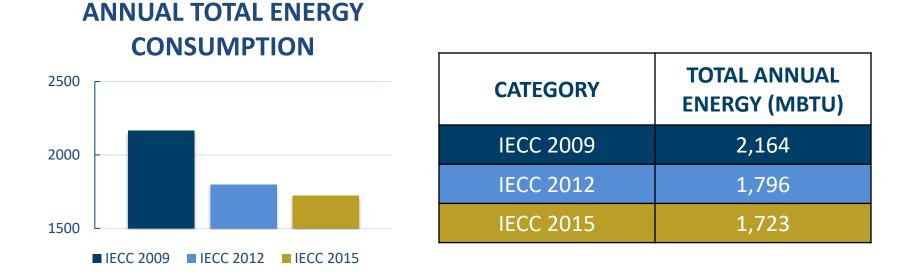
2009

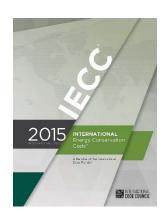
• (none)

2012

- HVAC systems 40 tons (cooling) & 50 tons (heating) and larger & controls
- Lighting system commissioning
- HVAC Test and balance is mandatory.

2015


- Section C104 Final Inspection
 - Commissioning is part of final inspection
- Section C408 System Commissioning
 - Cx process is detailed to comply with industry standards
 - The registered design professional or approved agency shall provide evidence of commissioning
 - Commissioned Systems (C403, C404, C405)
 - Service water-heating systems, Swimming pool water-heating systems, Spa water-heating systems and controls
 - HVAC systems 40 tons (cooling) & 50 tons (heating) and larger & controls
 - Lighting system commissioning
 - HVAC Test and balance is mandatory.


Proposed process aligns with ASHRAE standards

SO WHAT DOES THIS MEAN FOR YOU?

- CZ performed a study of a higher education building, the UT Dallas Alumni Center
- Direct comparison of IECC 2009 to 2012 to 2015

UT DALLAS ALUMNI CENTER

-Two IECC compliant buildings, using minimum efficiencies for each applicable energy code.

-IECC 2015 showed a 17% reduction in total energy consumption over IECC 2009.

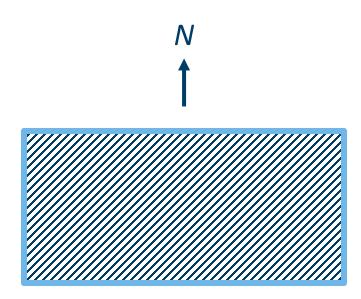
- Architectural: **Be proactive with clients**, let them know that there are several new changes up front that could result in **additional costs**
- MEP updates to: Air Cooled Chillers, Air Cooled Packaged RTU's, Lighting Power & Controls, Envelope Requirements
- We found that the allowable energy consumption is decreased by nearly 17%, not really 30% as hoped.

THANK YOU!

TreyM@ClearyZimmermann.com

210-447-6100

www.ClearyZimmermann.com



WINDOW GLAZING

TEST BUILDING PARAMETERS

- 2009 IECC Compliant
- 60,000 SF
- I-Shape
- 3 Story
- 30% Fenestration
- Test Various Glazing Options...

WINDOW GLAZING

Α	SUBSTRATE COLOR	IECC	EUI=+20.6%, Pay-Back Time = -10.5 y				
_		Window	Thickness	U	SHGC	VT	
B		Α	0.25" (1 Pane)	0.975	0.610	0.560 /	EUI=+4.4%, Pay-Back Time = -40.2 y
C		В	0.25" (1 Pane)	0.805	0.300	0.100	
C		C	1.00" (2 Panes)	0.480	0.820	0.840	EUI=+27.9%, Pay-Back Time = N/A
D		D	<u>1.00" (2 Panes)</u>	<u>0.385</u>	<u>0.140</u>	<u>0.060</u>	EUI=-8.4%, Pay-Back Time = 4.7 y
		Ε	1.75" (3 Panes)	0.210	0.340	0.630	
Ε		F	1.75" (3 Panes)	0.210	0.230	0.430	EUI=+0.8%, Pay-Back Time = N/A
F							EUI=-5.0%, Pay-Back Time = 134.3 y